Phương pháp chứng minh hình học THCS
- Phương pháp chứng minh hai đường thẳng song song
- 8 cách chứng minh 2 đường thẳng song song
- 10 cách chứng minh hai đường thẳng vuông góc
- 10 cách chứng minh 3 điểm thẳng hàng
- 13 cách chứng minh hai góc bằng nhau
- 8 cách chứng minh tia Oz là tia phân giác của góc xÔy
- 7 cách chứng minh M là trung điểm của đoạn thẳng AB
- Phương pháp chứng minh các tam giác đặc biệt
- Cách xác định tâm đường tròn nội tiếp, ngoại tiếp tam giác
- Phương pháp chứng minh các tứ giác đặc biệt
- 6 cách chứng minh tứ giác nội tiếp đường tròn
- Phương pháp chứng minh đường trung trực của đoạn thẳng
- 2 cách chứng minh đường thẳng là tiếp tuyến của đường tròn
- 4 cách chứng minh hai cung tròn bằng nhau
- 15 cách chứng minh hai đoạn thẳng bằng nhau
- 7 cách chứng minh một đoạn thẳng bằng 1/2 đoạn thẳng khác
- 4 cách chứng minh một góc bằng nửa góc khác
- 5 cách chứng minh 3 đường thẳng đồng quy
- Cách chứng minh hai tam giác đồng dạng và ứng dụng
- Ví dụ cách chứng minh hai tam giác bằng nhau
- Cách chứng minh một điểm là trọng tâm, trực tâm của tam giác
- Chứng minh một điểm là tâm đường tròn ngoại tiếp, nội tiếp, bàng tiếp tam giác
- Chứng minh các quan hệ không bằng nhau (cạnh góc cung)
Để chứng minh 3 điểm thẳng hàng trong mặt phẳng các em có thể sử dụng một trong 10 cách dưới đây.
1. Chứng minh điểm A thuộc đoạn thẳng BC.
2. Chứng minh qua 3 điểm xác định một góc bẹt (180)
- 50 bài toán hình học ôn thi vào lớp 10 có lời giải
- Cách giải bài toán BĐT và tìm GTNN, GTLN trong đề thi vào 10 môn Toán
- Chuyên đề ôn thi vào lớp 10 chuyên Hệ phương trình
- Chuyên đề ôn thi vào lớp 10 chuyên Hàm số
- Một số ví dụ chứng minh BĐT bằng phương pháp ghép cặp
3. Chứng minh hai góc ở vị trí đối đỉnh mà bằng nhau.
4. Chứng minh 3 điểm xác định được hai đường thẳng cùng vuông góc hay cùng song song với một đường thẳng thứ 3. (Tiên đề Ơclit)
5. Dùng tính chất đường trung trực: chứng minh 3 điểm đó cùng cách đều hai đầu đoạn thẳng.
6. Dùng tính chất tia phân giác: chứng minh 3 điểm đó cùng cách đều hai cạnh của một góc.
7. Sử dụng tính chất đồng quy của các đường: trung tuyến, phân giác, đường cao trong tam giác.
8. Sử dụng tính chất đường chéo của các tứ giác đặc biệt: hình vuôg, hình chữ nhật, hình thoi, hình bình hành, hình thang.
9. Sử dụng tính chất tâm và đường kính của đường tròn.
10. Sử dụng tính chất hai đường tròn tiếp xúc nhau.
Series Navigation
<< 10 cách chứng minh hai đường thẳng vuông góc
13 cách chứng minh hai góc bằng nhau >>
Series Navigation