Cách chứng minh tứ giác là hình bình hành hay, chi tiết – Toán lớp 8
Cách chứng minh tứ giác là hình bình hành hay, chi tiết
Với Cách chứng minh tứ giác là hình bình hành hay, chi tiết môn Toán lớp 8 phần Hình học sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 1: Tứ giác để đạt điểm cao trong các bài thi môn Toán 8.
A. Phương pháp giải
Nhận dạng hình bình hành: Thường sử dụng dấu hiệu nhận biết về cạnh đối và đường chéo.
- Tứ giác có các cạnh đối song song là hình bình hành
- Tứ giác có các cạnh đối bằng nhau là hình bình hành
- Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành
- Tứ giác có các góc đối bằng nhau là hình bình hành
- Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.
B. Ví dụ minh họa
Ví dụ 1. Tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác MNPQ là hình gì? Vì sao?
Giải
Tứ giác MNPQ là hình bình hành.
Giải thích: Thật vậy, từ giả thiết ta có MQ, NP thứ tự là các đường trung
bình của hai tam giác ABD và BCD. Áp dụng định lí đường trung bình vào hai tam giác đó, ta được:
Tứ giác MNPQ có hai cạnh đối song song và bằng nhau nên nó là hình bình hành.
Ví dụ 2. Cho hình sau, trong đó ABCD là hình bình hành. Chứng minh tứ giác AHCK là hình bình hành.
Giải
Từ giả thiết
Áp dụng tính chất về cạnh vào hình bình hành ABCD và tính chất góc so le của AD//BC ta được:
(trường hợp cạnh huyền, góc nhọn).
Suy ra AH = CK. (2)
Từ (1) và (2) ta có tứ giác AHCK có hai cạnh đối song song và bằng nhau nên nó là hình bình hành.
Ví dụ 3. Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD ở E, tia phân giác của góc C cắt AB ở F. Chứng minh rằng: Tứ giác AFCE là hình bình hành.
Giải
Áp dụng định nghĩa vào hình bình hành ABCD, ta được AB//DC, suy ra AE//EC. (1)
Áp dụng tính chất về góc, giả thiết vào hình bình hành ABCD và tính chất của các cặp góc so le, ta được:
(vì có cặp góc đồng vị bằng nhau). (2)
Từ (1) và (2) ta có tứ giác AFCE có các cạnh đối song song nên nó là hình bình hành.
C. Bài tập vận dụng
Câu 1. Hãy chọn câu sai:
A. Tứ giác có hai cặp cạnh đối song song là hình bình hành.
B. Hình thang có hai góc kề một đáy bằng nhau là hình bình hành.
C. Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành.
D. Tứ giác có hai cặp góc đối bằng nhau là hình bình hành.
Hiển thị đáp án
Dấu hiệu nhận biết:
- Tứ giác có các cạnh đối song song là hình bình hành nên A đúng.
- Tứ giác có các cạnh đối bằng nhau là hình bình hành nên C đúng.
- Tứ giác có các góc đối bằng nhau là hình bình hành nên D đúng.
Nhận thấy hình thang có hai góc kề một đáy bằng nhau là hình thang cân nên B sai.
Đáp án: B.
Câu 2. Hãy chọn câu đúng. Tứ giác ABCD là hình bình hành nếu.
Hiển thị đáp án
Tứ giác ABCD là hình bình hành khi AB//CD, BC//AD nên C sai.
Tứ giác ABCD là hình bình hành khi nên D đúng.
A, B sai vì chưa đủ điều kiện để kết luận.
Đáp án: D.
Câu 3. Cho tam giác ABC với ba trung tuyến AI, BD, CE đồng quy tại G. M và N lần lượt là trung điểm của GC và GB. Tứ giác MNED là hình gì?
A. Hình chữ nhật.
B. Hình bình hành.
C. Hình thang cân.
D. Hình thang vuông.
Hiển thị đáp án
Xét tam giác ABC có E là trung điểm AB, D là trung điểm AC nên ED là đường trung bình của tam giác ABC
Xét tam giác GBC có N là trung điểm của GB; M là trung điểm GC nên MN là đường trung bình của tam giác GBC
Từ (1) và (2) ⇒ MN//ED; MN = ED nên tứ giác MNED là hình bình hành (dấu hiệu nhận biết).
Đáp án: B.
Câu 4. Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau tại G. Vẽ các điểm H, I sao cho D là trung điểm của GH, E là trung điểm của GI. Tứ giác BIHC là hình gì?
A. Hình bình hành.
B. Hình thang
C. Hình thang cân
D. Cả A, B, C đều sai
Hiển thị đáp án
Từ giả thiết BD, CE là các đường trung tuyến của tam giác ABC nên D, E lần lượt là trung điểm của AC và AB.
Cũng từ giả thiết D, E thứ tự là trung điểm của GH, GI. Do đó DE là đường trung bình của hai tam giác ABC và GHI.
Áp dụng định lí đường trung bình vào hai tam giác trên, thu được:
Tứ giác BCHI có hai cạnh đối song song và bằng nhau nên nó là hình bình hành.
Đáp án: A.
Câu 5. Hãy chọn câu đúng. Cho hình bình hành ABCD có các điều kiện như hình vẽ, trong hình có:
A. 6 hình bình hành.
B. 5 hình bình hành.
C. 4 hình bình hành.
D. 3 hình bình hành.
Hiển thị đáp án
Vì ABCD là hình bình hành nên AB//CD; AD//BC.
Xét tứ giác AEFD có AE = FD; AE//FD (doAB//CD) nên AEFD là hình bình hành.
Xét tứ giác BEFC có BE = FC; BE//FC (do AB//CD) nên BEFC là hình bình hành.
Xét tứ giác AECF có AE = FC; AE//FC (do AB//CD) nên AECF là hình bình hành.
Xét tứ giác BEDF có BE = FD; BE//FD (doAB//CD) nên BEDF là hình bình hành.
Vì AECF là hình bình hành nên AF//EC ⇒ EH//GF; vì BEDF là hình bình hành nên ED//BF EG//HF
Suy ra EGFH là hình bình hành.
Vậy có tất cả 6 hình bình hành ABCD; AEFD; BEFC; AECF; BEDF; EGFH
Đáp án: A.
Câu 6. Hãy chọn câu trả lời sai.
Cho hình vẽ, ta có:
A. ABCD là hình bình hành.
B. AB//DC.
C. ABCD là hình thang cân.
D. BC//AD.
Hiển thị đáp án
Từ hình vẽ ta có O là trung điểm của BD và AC. Do đó tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm mỗi đường, suy ra tứ giác ABCD là hình bình hành, suy ra A đúng.
Vì ABCD là hình bình hành nên AB//DC; AD//BC (tính chất) ⇒ B, D đúng.
Chưa đủ điều kiện để ABCD là hình thang cân.
Đáp án: C.
Câu 7. Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD tại M. Tia phân giác góc C cắt AB tại N (hình vẽ). Hãy chọn câu trả lời sai.
A. AMCN là hình bình hành.
B. CMAB là hình thang.
C. ANCD là hình thang cân.
D. AN = MC.
Hiển thị đáp án
nên là hình bình hành (dấu hiệu nhận biết).
Vì AMCN là hình bình hành nên AN = CM (tính chất) nên A, D đúng.
Vì MC//AB ⇒ AMCB là hình thang nên B đúng.
Vì AN//CD ⇒ ANCD là hình thang. Chưa đủ điều kiện để ANCD là hình thang cân nên C sai.
Đáp án: C.
Câu 8. Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D.
Chọn câu trả lời đúng nhất. Tứ giác BDCH là hình gì?
A. Hình thang
B. Hình bình hành
C. Hình thang cân
D. Hình thang vuông
Hiển thị đáp án
Gọi BK; CI là các đường cao của tam giác ABC. Khi đó hay (vì H là trực tâm).
Lại có (giả thiết) nên BD//CH (cùng vuông với AB) và CD//BH (cùng vuông với AC). Suy ra tứ giác BHCD là hình bình hành.
Đáp án: B.
Câu 9. Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là trung điểm của AE, EC, CF, FA. Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
A. Hình bình hành.
B. Hình thang vuông.
C. Hình thang cân.
D. Hình thang.
Hiển thị đáp án
Nối AC vì M, N lần lượt là trung điểm của AE, EC nên MN là đường trung bình của tam giác EAC suy ra
Tương tự PQ là đường trung bình của tam giác FAC suy ra
Từ (1); (2) suy ra PQ//NM; PQ = MN nên MNPQ là hình bình hành.
Đáp án: A.
Câu 10. Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB và CD. M, N, P, Q lần lượt là trung điểm của AF, CE, BF, DE. Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
A. Hình bình hành.
B. Hình thang vuông.
C. Hình thang cân.
D. Hình thang.
Hiển thị đáp án
Nối EF, EP, FQ, EM, PM, QN. Gọi O là giao của QN và EF.
Xét tam giác CED có FN là đường trung bình nên:
⇒NFQE là hình bình hành nên hai đường chéo QN và EF giao nhau tại trung điểm của mỗi đường. Suy ra O là trung điểm của QN (1) và EF.
Xét tam giác ABF có EM là đường trung bình nên:
⇒EMPF là hình bình hành nên hai đường chéo PM và EF giao nhau tại trung điểm của mỗi đường. Mà O là trung điểm của EF nên O cũng là trung điểm của PM. (2)
Từ (1) và (2) suy ra: tứ giác QMNP có hai đường chéo QN, PM giao nhau tại trung điểm O mỗi đường nên QMNP là hình bình hành.
Đáp án: A.
Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm lớp 8 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k8: fb.com/groups/hoctap2k8/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.