Trục căn thức ở mẫu của biểu thức: Lý thuyết, Bài tập và Cách giải

Biến đổi đơn giản căn thức bậc hai và trục căn thức ở mẫu của biểu thức là dạng toán quen thuộc trong chương trình toán học lớp 9. Trong nội dung bài viết dưới đây, DINHNGHIA.VN sẽ tổng hợp kiến thức lý thuyết, bài tập ví dụ cũng như cách giải các dạng toán về chủ đề trục căn thức tại mẫu của biểu thức, cùng tìm hiểu nhé!

Cách biến đổi đơn giản căn thức bậc hai

Dưới đây là những kiến thức cần nhớ về cách biến đổi đơn giản căn thức bậc hai

tìm hiểu về trục căn thức ở mẫu

trục căn thức ở mẫu và biến đổi đơn giản biểu thức

Trục căn thức tại mẫu của biểu thức

Dưới đây là lý thuyết và cách làm bài trục căn thức mẫu của phân số: 

Với các biểu thức \(A,B (B>0)\), ta có;

\(A,B (B>0)\)

Với các biểu thức \(A,B,C\) \((A\geq 0, A\neq B^{2})\)

Ta có:

\(\frac{C}{\sqrt{A}+B}=\frac{C(\sqrt{A}-B)}{A-B^{2}}\)

\(\frac{C}{\sqrt{A}-B}=\frac{C(\sqrt{A}+B)}{A-B^{2}}\)

Với các biểu thức \(A,B,C\) \((A\geq 0,B\geq 0,A\neq B)\)

Ta có:

\(\frac{C}{\sqrt{A}+\sqrt{B}}=\frac{C(\sqrt{A}-\sqrt{B})}{A-B}\)

\(\frac{C}{\sqrt{A}-\sqrt{B}}=\frac{C(\sqrt{A}+\sqrt{B})}{A-B}\)

Bài tập trục căn thức ở mẫu lớp 9

Bài 50 (trang 30 SGK Toán 9 Tập 1): Trục căn thức mẫu với giả thiết các biểu thức chữ đều có nghĩa.

\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{\sqrt{10}.\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)

\(\frac{1}{3\sqrt{20}}=\frac{1}{3\sqrt{2^{2}.5}}=\frac{1}{3.2\sqrt{5}}=\frac{1\sqrt{5}}{6\sqrt{5}.\sqrt{5}}=\frac{\sqrt{5}}{6.5}=\frac{\sqrt{5}}{30}\)

\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{(2\sqrt{2}+2)\sqrt{2}}{5\sqrt{2}.\sqrt{2}}=\frac{2(\sqrt{2})^{2}+2\sqrt{2}}{5.2}=\frac{4+2\sqrt{2}}{10}=\frac{2+\sqrt{2}}{5}\)

Bài 52 trang 30 SGK toán 9 tập 1 Trục căn thức mẫu với giả thiết các biểu thức chữ đều có nghĩa.

\(\frac{1}{\sqrt{x}-\sqrt{y}};\frac{2ab}{\sqrt{a}-\sqrt{b}}\)

  • \(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{1(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}=\frac{(\sqrt{x}+\sqrt{y})}{x-y}\)

(Do \(x\neq y\) nên \(\sqrt{x}\neq \sqrt{y}\)

  • \(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2ab(\sqrt{a}+\sqrt{b})}{a-b}\)

(Do \(a\neq b\) nên \(\sqrt{a}\neq \sqrt{b}\).

Các bài toán trục căn thức ở mẫu khó

Ví dụ 1: Trục căn thức mẫu các biểu thức sau

  1. \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

  2. \(\frac{26}{5-2\sqrt{3}}\)

Hướng dẫn giải:

các bài toán trục căn thức ở mẫu khó

Ví dụ 2: Trục căn thức mẫu

luyện tập về trục căn thức ở mẫu

các dạng về trục căn thức ở mẫu

Lý thuyết trục căn thức ở mẫu bậc 3

Công thức:

\(\frac{M}{\sqrt[3]{a}\pm \sqrt[3]{b}}=\frac{M(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}{(\sqrt[3]{a}\pm \sqrt[3]{b})(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}=\frac{M(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}{a\pm b}\)

Ví dụ: Trục căn thức mẫu: \(\frac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\)

Hướng dẫn giải:

Ta có: \(\frac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{(\sqrt[3]{2}+\sqrt[3]{3})(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4})}=\frac{\sqrt[3]{2}+\sqrt[3]{3}}{(\sqrt[3]{2})^{3}+(\sqrt[3]{3})^{3})}=\frac{\sqrt[3]{2}+\sqrt[3]{3}}{5}\)

Bài viết trên đây của DINHNGHIA.VN đã giúp bạn tổng hợp kiến thức cách biến đổi đơn giản căn thức bậc hai cũng như chuyên đề trục căn thức tại mẫu. Chúc bạn luôn học tập tốt!

Xem chi tiết qua bài giảng dưới đây:

(Nguồn: www.youtube.com)

Xem thêm >>> Cách xác định tâm đường tròn ngoại tiếp tam giác – Toán học lớp 9

4.1

/

5

(

30

bình chọn

)

Please follow and like us:

error

fb-share-icon
Tweet

fb-share-icon

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *