Lý thuyết mẫu nguyên tử bo – quang phổ của nguyên tử hidro lý 12

I – NỘI DUNG 

1. Mẫu nguyên tử Bo

– Ngược lại, nếu nguyên tử ở trạng thái dừng có năng lượng \({E_m}\) mà hấp thụ được một phôtôn có năng lượng hf đúng bằng hiệu \({E_n}–{\rm{ }}{E_m}\)  thì nó chuyển sang trạng thái dừng có năng lượng \({E_n}\)  lớn hơn.

– Sự chuyển từ trạng thái dừng \({E_m}\) sang trạng thái dừng \({E_n}\)  ứng với sự nhảy của electron từ quỹ đạo dừng có bán kính \({r_m}\)  sang quỹ đạo dừng có bán kính \({r_n}\)  và ngược lại.

2. Quang phổ vạch của nguyên tử Hidrro

– Bình thường electron (e) chỉ chuyển động trên quỹ đạo K (trạng thái cơ bản)

– Khi bị kích thích, e nhảy lên quỹ đạo có năng lượng lớn hơn L, M, N, … Thời gian ở trạng thái kích thích rất ngắn (10-8s) sau đó e chuyển về các quỹ đạo bên trong và phát ra photon có năng lượng đúng bằng hiệu \(\varepsilon = {E_{cao}} – {E_{thap}}\)

– Mỗi photon tần số f ứng với vạch sáng có bước sóng \(\lambda = \dfrac{c}{f}\) cho 1 vạch quang phổ.

– Quang phổ vạch phát xạ của Hiđro nằm trong 3 dãy (hình trên)

Trong dãy Banme, nguyên tử Hiđro có 4 vạch: \({H_\alpha }\)  (đỏ), \({H_\beta }\)  (lam), \({H_\gamma }\)  (chàm), \({H_\delta }\)  (tím)

Ở trạng thái cơ bản \({E_1} = {\rm{ }} – 13,6eV,{E_n} = \dfrac{{{E_1}}}{{{n^2}}}\)

II – CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI

3. Dạng 3: tính \({\lambda _{{\bf{max}}}},{\lambda _{{\bf{min}}}}\) trong các dãy.

\(\dfrac{{hc}}{\lambda } = {\rm{ }}{E_n} – {\rm{ }}{E_m} \to \lambda  = \dfrac{{hc}}{{{E_n} – {\rm{ }}{E_m}}}\);  \({E_\infty } = {\rm{ }}0\)

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *