Khoảng cách giữa 2 mặt phẳng trong không gian
Khoảng cách giữa 2 mặt phẳng trong không gian được xác định như thế nào và được tính như thế nào, công thức ra sao ?. Tất cả các vấn đề trên sẽ được giải quyết trong bài viết này.
Nội dung chính
- Khoảng cách giữa 2 mặt phẳng trong không gian
- Cách tính khoảng cách giữa hai mặt phẳng song song cực hay
- BÀI VIẾT LIÊN QUAN
- Khi biết phương trình của hai mặt phẳng song song ta dễ dàng tính được khoảng cách giữa 2 mặt phẳng này. Bài viết này gửi tới bạn công thức tổng quát và những ví dụ có lời giải chi tiết
- Lý thuyết khoảng cách
- Phương pháp tìm khoảng cách giữa 2 mặt phẳng song song
- Video liên quan
Nội Dung
-
1
ĐỊNH NGHĨA KHOẢNG CÁCH GIỮA 2 MẶT PHẲNG
-
2
CÔNG THỨC TÍNH KHOẢNG CÁCH GIỮA HAI MẶT PHẲNG
-
3
VÍ DỤ TÍNH KHOẢNG CÁCH GIỮA 2 MẶT PHẲNG
Cách tính khoảng cách giữa hai mặt phẳng song song cực hay
Trang trước
Trang sau
Quảng cáo
Cho hai mặt phẳng (P) và (Q) song song với nhau. Để tính khoảng cách giữa (P) và (Q) ta thực hiện các bước:
+ Bước 1: Chọn một điểm A trên (P) sao cho khoảng cách từ A đến (Q) có thể được xác định dễ nhất.
+ Bước 2: Kết luận: d((P); (Q)) = d(A; (Q)).
Ví dụ 1: Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a. Gọi M, N, P lần lượt là trung điểm của AD, DC, A’D’. Tính khoảng cách giữa hai mặt phẳng(MNP) và (ACC’).
Hướng dẫn giải
Chọn D
Ta có: M và N lần lượt là trung điểm của AD và CD nên MN là đường trung bình của tam giác ADC.
⇒ MN // AC(1)
+ Do M; P lần lượt là trung điểm của AD và A’D’ nên MP // AA’ // DD’
Lại có: CC’ // AA’ nên MP // CC’(2)
Từ (1) và (2) suy ra: ( MNP) // (ACC’)
+ Gọi O là giao điểm của A’C’ và B’D’. Do ABCD.A’B’C’D’ là hình lăng trụ tứ giác đều nên D’O ⊥ (AA’C’C) và d(D’; (ACC’)) = D’O.
Ví dụ 2: Cho hình lăng trụ tam giác ABC.A’B’C’ có các cạnh bên hợp với đáy những góc bằng 60°, đáy ABC là tam giác đều và A’ cách đều A, B; C. Tính khoảng cách giữa hai đáy của hình lăng trụ.
Hướng dẫn giải
Chọn A
+ Vì tam giác ABC đều và AA’ = BA’ = CA’ (giả thiết) nên A’.ABC là hình chóp đều.
Gọi A’H là chiều cao của lăng trụ, suy ra H là trọng tâm tam giác ABC
Lăng trụ ABC.A’B’C’ có các cạnh bên hợp với đáy góc 60° nên ∠A’AH = 60°.
+ Xét tam giác AHA’ có: A’H = AH.tan60° = ((a√3)/3).√3 = a
+ lại có; (ABC) // (A’B’C’) ( định nghĩa hình lăng trụ) nên d((ABC), (A’B’C’)) = d( A’, (ABC)) = A’H = a
Quảng cáo
Ví dụ 3: Cho hình lăng trụ tam giác ABC.A’B’C’ có cạnh bên bằng a. Các cạnh bên của lăng trụ tạo với mặt đáy góc 60°. Hình chiếu vuông góc của A’lên mặt phẳng (ABC) là trung điểm của BC. Khoảng cách giữa hai mặt đáy của lăng trụ bằng bao nhiêu?
Hướng dẫn giải
Gọi H là trung điểm của BC ⇒ A’H ⊥ (ABC). Các cạnh bên của lăng trụ tạo với mặt đáy là 60° nên ∠A’AH = 60°
+ Xét tam giác A’HA vuông tại H ta có: A’H = AA’.sin60° = (a√3)/2.
+ Do (ABC) // ( A’B’C’) (định nghĩa hình lăng trụ) nên d((ABC); (A’B’C’)) = d(A’; (ABC)) = A’H = (a√3)/2
Chọn đáp án A
Ví dụ 4: Cho hình lăng trụ ABC.AB’C’ có tất cả các cạnh đều bằng a. Góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30°. Hình chiếu H của A trên mặt phẳng (A’B’C’) thuộc đường thẳng B’C’. Khoảng cách giữa hai mặt phẳng đáy là:
Hướng dẫn giải
+ Do hình lăng trụ ABC.A’B’C’ có tất cả các cạnh đều bằng a nên AB’ = AC’.
⇒ tam giác AB’C’ là tam giác cân có AH là đường cao nên đồng thời là đường trung tuyến (do AH ⊥ (A’B’C’)
⇒ HB’ = HC’ và A’H = AC.sin60° = (a√3)/2
+ Do góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30° và có AH ⊥ (A’B’C’) nên ∠AA’H = 30°
Xét tam giác AA’H vuông tại H có:
AH = A’H.tan(AA’H) = (a√3)/2.tan30° = a/2
Chọn đáp án C
Ví dụ 5: Cho hình lập phương ABCD.A’B’C’D; cạnh a. Khoảng cách giữa (AB’C) và (A’DC’) bằng :
Hướng dẫn giải
+ Xét hai mp(AB’C) và (A’DC’) có:
+ Gọi O’ là tâm của hình vuông A’B’C’D’. Gọi I là hình chiếu của D’ trên O’D suy ra I là hình chiếu của D’ trên (A’DC’)
ta có: B’D’ = a√2 và O’D’ = (1/2)B’D’ = (a√2)/2
+ xét tam giác O’D’D vuông tại D’ có:
Vậy d((AB’C) ; (A’DC’)) = (a√3)/3
Chọn đáp án D
Quảng cáo
Câu 1: Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a. Gọi M, N, P lần lượt là trung điểm của AD, DC và A’D’. Tính khoảng cách giữa hai mặt phẳng (MNP) và (ACC’)
Hiển thị lời giải
Nhận xét (ACC’) ≡ (ACC’A’)
Gọi O = AC ∩ BD, I = MN ∩ BD
+ Ta có M và N lần lượt là trung điểm của AD và DC nên MN là đường trung bình của tam giác ADC và MN // AC (1)
+ Tương tự: M, P lần lượt là trung điểm của AD và A’D’ nên MP là đường trung bình của hình thang A’D’DA
⇒ MP // AA’ // PP’(2) .
Từ (1) và (2) suy ra: (MNP) // (ACC’)
Mà O thuộc mp( ACC’) nên d((MNP); (ACC’) ) = d(O; (ACC’))
+ Ta có: OI ⊥ AC và OI ⊥ AA’ (vì AA’ ⊥ (ABCD) và OI ⊂ (ABCD))
⇒ OI ⊥ (ACC’A’) nên d(O; (ACC’)) = OI
Suy ra
Chọn đáp án B
Câu 2: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Khi đó, khoảng cách giữa hai mặt phẳng (CB’D’) và (BDA’) bằng
Hiển thị lời giải
+ Ta có: BD // B’D’ và A’D // B’C
⇒ (A’BD) // (B’CD’) nên ta có:
d((A’BD); (CB’D’)) = d(B’; (A’BD)) = d(A; (A’BD))
+ Vì AB = AD = AA’ = a và A’B = A’D = BD = a√2
⇒ Hình chóp A.A’BD là hình chóp tam giác đều.
+ Gọi I là trung điểm A’B và G là trọng tâm tam giác A’BD.
⇒ AG ⊥ (A’BD)
Khi đó ta có: d(A ; (A’BD)) = AG
+ Vì tam giác A’BD đều cạnh a√2 nên
Theo tính chất trọng tâm ta có:
Trong tam giác vuông AGD có:
Chọn B
Câu 3: Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Khoảng cách giữa (ACB’) và (DA’C’) bằng
Hiển thị lời giải
+ Ta có : AC // A’C’ và B’C // A’D
=> (ACB’) // (DA’C’)
Lại có: D ∈ mp(DA’C’) nên d((ACB’), (DA’C’)) = d(D, (ACB’)) = d(B, (ACB’))
+ Vì BA = BB’ = BC = a và nên hình chóp B.ACB’ là hình chóp tam giác đều
+ Gọi I là trung điểm AC và G là trọng tâm tam giác ACB’.
⇒ BG ⊥ (ACB’)
Khi đó ta có: d(B, (ACB’)) = BG
+ Vì tam giác ACB’ đều cạnh a√2 nên
Theo tính chất trọng tâm ta có:
Trong tam giác vuông BGB’ có:
Chọn C
Câu 4: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 4; AD = 3. Mặt phẳng (ACD’) tạo với mặt đáy một góc 60°. Tính khoảng cách giữa hai mặt đáy của hình hộp.
Hiển thị lời giải
+ Gọi O là hình chiếu của D lên AC.
+ Khoảng cách giữa hai mặt đáy là:
Chọn đáp án B
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N và P lần lượt là trung điểm của các cạnh AB, AD và DC. Gọi J là trung điểm SA và H là giao điểm của CN và DM, biết SH vuông góc (ABCD), SH = a√3. Khoảng cách từ (MDJ) đến mặt phẳng (SBP) tính theo a bằng
Hiển thị lời giải
+ Ta có: MJ // SB (vì MJ là đường trung bình của tam giác SAB). Và MD // BP
⇒ (DMJ) //( SBP)
⇒ d((DMJ); (SBP)) = d(H, (SBP)).
+ Ta chứng minh: NC ⊥ MD
Chọn C
Giới thiệu kênh Youtube Tôi
Trang trước
Trang sau
BÀI VIẾT LIÊN QUAN
- Phương pháp tính góc giữa đường thẳng và mặt phẳng và bài tập áp dụng
- Phương pháp tính khoảng cách từ một điểm đến một đường thẳng trong không gian
- Phương pháp tính khoảng cách từ một điểm đến một mặt phẳng
- Phương pháp tính góc giữa hai đường thẳng trong không gian
- Sự tương giao giữa đường thẳng và đồ thị hàm số bậc ba
- Sự tương giao giữa đường thẳng với đồ thị hàm số trùng phương
- Sự tương giao giữa đường thẳng với đồ thị hàm số y = (ax + b)/(cx + d)
- Phương pháp tính góc giữa hai mặt phẳng và bài tập áp dụng
- Bài toán tìm điểm cố định của họ đường cong
- Thủ thuật Casio tìm đường tiệm cận của đồ thị hàm số
- Căn bậc hai và phương trình bậc hai của số phức
- Ứng dụng tích phân tính diện tích hình phẳng
- Tìm m để hàm số tăng hay giảm trong khoảng con của R
- Các phương pháp giải hệ phương trình mũ và logarit
- Thủ thuật Casio giải nhanh bài toán tích phân chống Casio
Khi biết phương trình của hai mặt phẳng song song ta dễ dàng tính được khoảng cách giữa 2 mặt phẳng này. Bài viết này gửi tới bạn công thức tổng quát và những ví dụ có lời giải chi tiết
Lý thuyết khoảng cách
Quảng cáo
1. Khoảng cách từmột điểm đến một mặt phẳng, đến một đường thẳng.
Định nghĩa 1
Khoảng cách từ 1 điểm \(M\) đến một mặt phẳng \((P)\)(hoặc đến đường thẳng\(∆\)) là khoảng cách giữa hai điểm \(M\) và \(H\), trong đó \(H\) là hình chiếu của điểm \(M\) trên mặt phẳng \((P)\) (h.3.56a), kí hiệu là \(d(M, (P))\)(hoặc trên đường thẳng\(∆\), kí hiệu là \(d(M,∆)\) (h.3.56b)).
2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.
Định nghĩa 2
Khoảng cách giữa đường thẳng \(a\) và mặt phẳng \((P)\) song song với \(a\) là khoảng cách từ một điểm bất kì của \(a\) tới mặt phẳng \((P)\) (h.3.57), kí hiệu là \(d(a, (P))\).
Định nghĩa 3
Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này tới mặt phẳng kia.
3. Khoảng cách giữa hai đường thẳng chéo nhau
Định nghĩa
– Đường thẳng \(c\) cắt và vuông góc với cả \(a\) và \(b\) gọi là đường vuông góc chung của \(a\) và \(b\) (h.3.58).
– Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng chéo nhau đó.
Nhận xét
Khoảng cách giữa hai đường thẳng chéo nhau bằng:
– Khoảng cách từ một trong hai đường thẳng đã cho đến mặt phẳng song song với nó và chứa đường thẳng còn lại.
– Khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó (h.3.59).
Cách xác định đường vuông góc chung của hai đường thẳng chéo nhau.
– Dựng mp \((P)\) chứa \(b\) và song song với \(a\).
– Từ một điểm \(M\) trên \(a\), dựng đường thẳng vuông góc với \((P)\), cắt \((P)\) tại \(M’\).
– Trong \((P)\) từ \(M’\) dựng đường thẳng \(a’ // a\), cắt \(b\) tại \(B\).
– Trong mp \((a,a’)\), từ \(B\) dựng đường thẳng song song với \(MM’\), cắt \(a\) tại \(A. AB\) là đường thẳng cần dựng (h3.60).
Loigiaihay.com
Bài tiếp theo
-
Câu hỏi 1 trang 115 SGK Hình học 11
Cho điểm O và đường thẳng a. Chứng minh rằng khoảng cách từ điểm O đến đường thẳng a là bé nhất so với các khoảng cách từ O đến một điểm bất kì của đường thẳng a
-
Câu hỏi 2 trang 115 SGK Hình học 11
Cho điểm O và mặt phẳng (α). Chứng minh rằng khoảng cách từ điểm O đến mặt phẳng (α) là bé nhất so với các khoảng cách từ O tới một điểm bất kì của mặt phẳng (α).
-
Câu hỏi 3 trang 116 SGK Hình học 11
Cho đường thẳng a song song với mặt phẳng (α)….
-
Câu hỏi 4 trang 116 SGK Hình học 11
Cho hai mặt phẳng (α) và (β)…
-
Câu hỏi 5 trang 116 SGK Hình học 11
Cho tứ diện đều ABCD. Gọi M, N lần lượt là trung điểm của cạnh BC và AD. Chứng minh rằng: MN ⊥ BC và MN ⊥ AD (h.3.42)…
- Lý thuyết cấp số nhân
- Lý thuyết cấp số cộng
- Lý thuyết về hàm số liên tục
- Lý thuyết đường thẳng vuông góc với mặt phẳng
Quảng cáo
Luyện Bài Tập Trắc nghiệm Toán 11 – Xem ngay
Báo lỗi – Góp ý